martes, 18 de marzo de 2008

HISTORIA DE LA CIENCIA

Los esfuerzos para ordenar el conocimiento se remontan a los primeros tiempos históricos (con escritura), los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades — además de numerosas tablas matemáticas — inscritas en caracteres cuneiformes sobre tablillas de arcilla. Otras tablillas que datan aproximadamente del 2000 a.C. demuestran que los babilonios conocían el teorema de Pitágoras, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para tiempos y ángulos.
En el valle del Nilo se han descubierto papiros de un periodo cronológico próximo al de las culturas mesopotámicas que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide. Algunas de las unidades de longitud actuales proceden del sistema de medidas egipcio y el calendario que empleamos es el resultado indirecto de observaciones astronómicas prehelénicas.
Orígenes de la Teoría Científica
El conocimiento científico en Egipto y Mesopotamia era sobre todo de naturaleza práctica.
Es de destacar que por su posición filosófica, los griegos fueron muy buenos en geometría pero no desarrollaron una "ciencia" fáctica (basada en la experiencia basada en hechos observados). Uno de los primeros griegos, en el siglo VI a.C., que intentó explicar las causas fundamentales de los
fenómenos naturales fue el filósofo Tales de Mileto. Fue un gran matemático que pensaba que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en disciplina fundamental en toda investigación científica. Los eruditos pitagóricos postulaban una Tierra esférica que se movía en una órbita circular alrededor de un fuego central. En Atenas, en el siglo IV a.C., la filosofía natural jónica y la ciencia matemática pitagórica llegaron a una síntesis en la lógica de Platón y Aristóteles. En la Academia de Platón se subrayaba el razonamiento deductivo y la representación matemática; en el Liceo de Aristóteles primaban el razonamiento inductivo y la descripción cualitativa. La interacción entre estos dos enfoques de la ciencia ha llevado a la mayoría de los avances posteriores.
Por esta época — 300 a. c.— Euclides (quien probablemente estudió en Atenas con discípulos de Platón) escribe "Elementos de geometría", es un extenso tratado de matemáticas en 13 volúmenes sobre materias tales como geometría plana, proporciones en general, propiedades de los números, magnitudes inconmensurables y geometría del espacio. En esta obra se parte de conceptos que se toman como verdades absolutas (axiomas o postulados) y se los utiliza para "demostrar" propiedades (teoremas). Estos teoremas son la base para demostrar otros teoremas armando una estructura sistematisada que aún hoy se utiliza en matemática. Es de destacar que el quinto postulado (postulado de las paralelas) es de extrema importancia ya que en el siglo XIX su negación dará origen a la geometría llamada no euclidiana.
Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno, el matemático, astrónomo y geógrafo Eratóstenes, tomó la distancia entre dos ciudades egipcias y calculó de forma asombrosamente precisa de las dimensiones de la Tierra. Por otro lado el astrónomo Aristarco de Samos propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua. El matemático e inventor Arquímedes sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección.
Tras la destrucción de Cartago y Corinto por los romanos en el año 146 a.C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d.C. bajo el emperador y filósofo romano Marco Aurelio. Durante este breve lapso el astrónomo Claudio Ptolomeo propuso la teoría donde la Tierra era el centro del Universo (teoría geocéntrica). También surgieron las obras médicas del filósofo y médico Galeno que se convirtieron en tratados médicos de referencia para las civilizaciones posteriores.
Un siglo después surgió la nueva ciencia experimental de la alquimia a partir de la metalurgia. Sin embargo, hacia el año 300, la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia.
La Ciencia Medieval Y Renacentista
Durante la edad media existían seis grupos culturales principales: en lo que respecta a Europa, de un lado el Occidente latino y, de otro, el Oriente griego (o bizantino); en cuanto al continente asiático, China e India, así como la civilización musulmana (también presente en Europa), y, finalmente, en el ignoto continente americano, desligado del resto de los grupos culturales mencionados, la civilización maya. El grupo latino no contribuyó demasiado a la ciencia hasta el siglo XIII; los griegos no elaboraron sino meras paráfrasis de la sabiduría antigua; los mayas, en cambio, descubrieron y emplearon el cero en sus cálculos astronómicos, antes que ningún otro pueblo. En China la ciencia vivió épocas de esplendor, pero no se dio un impulso sostenido. Las matemáticas chinas alcanzaron su apogeo en el siglo XIII con el desarrollo de métodos para resolver ecuaciones algebraicas mediante matrices y con el empleo del triángulo aritmético. Pero lo más importante fue el impacto que tuvieron en Europa varias innovaciones prácticas de origen chino. Entre ellas estaban los procesos de fabricación del papel y la pólvora, el uso de la imprenta y el empleo de la brújula en la navegación. Las principales contribuciones indias a la ciencia fueron la formulación de los numerales denominados indoarábigos, empleados actualmente, y la modernización de la trigonometría. Estos avances se transmitieron en primer lugar a los árabes, que combinaron los mejores elementos de las fuentes babilónicas, griegas, chinas e indias. En el siglo IX Bagdad, situada a orillas del río Tigris, era un centro de traducción de obras científicas y en el siglo XII estos conocimientos se transmitieron a Europa a través de España, Sicilia y Bizancio.
En el siglo XIII la recuperación de obras científicas de la antigüedad en las universidades europeas llevó a una controversia sobre el método científico. Los llamados realistas apoyaban el enfoque platónico, mientras que los nominalistas preferían la visión de Aristóteles. En las universidades de Oxford y París estas discusiones llevaron a descubrimientos de óptica y cinemática que prepararon el camino para Galileo y para el astrónomo alemán Johannes Kepler.
La gran epidemia de peste y la guerra de los Cien Años interrumpieron el avance científico durante más de un siglo, pero en el siglo XVI la recuperación ya estaba plenamente en marcha. En 1543 el astrónomo polaco Nicolás Copérnico publicó De revolutionibus orbium caelestium (Sobre las revoluciones de los cuerpos celestes), que conmocionó la astronomía. Otra obra publicada ese mismo año, Humani corporis fabrica libri septem (Siete libros sobre la estructura del cuerpo humano), del anatomista belga Andrés Vesalio, corrigió y modernizó las enseñanzas anatómicas de Galeno y llevó al descubrimiento de la circulación de la sangre. Dos años después, el libro Ars magna (Gran arte), del matemático, físico y astrólogo italiano Gerolamo Cardano, inició el periodo moderno en el álgebra con la solución de ecuaciones de tercer y cuarto grado.
La Ciencia Moderna
Esencialmente, los métodos y resultados científicos modernos aparecieron en el siglo XVII gracias al éxito de Galileo al combinar las funciones de erudito y artesano. A los métodos antiguos de inducción y deducción, Galileo añadió la verificación sistemática a través de experimentos planificados, en los que empleó instrumentos científicos de invención reciente como el telescopio, el microscopio o el termómetro. A finales del siglo XVII se amplió la experimentación: el matemático y físico Evangelista Torricelli empleó el barómetro; el matemático, físico y astrónomo holandés Christiaan Huygens usó el reloj de péndulo; el físico y químico británico Robert Boyle y el físico alemán Otto von Guericke utilizaron la bomba de vacío.
La culminación de esos esfuerzos fue la formulación de la ley de la gravitación universal, expuesta en 1687 por el matemático y físico británico Isaac Newton en su obra Philosophiae naturalis principia mathematica (Principios matemáticos de la filosofía natural). Al mismo tiempo, la invención del cálculo infinitesimal por parte de Newton y del filósofo y matemático alemán Gottfried Wilhelm Leibniz sentó las bases de la ciencia y las matemáticas actuales.
Los descubrimientos científicos de Newton y el sistema filosófico del matemático y filósofo francés René Descartes dieron paso a la ciencia materialista del siglo XVIII, que trataba de explicar los procesos vitales a partir de su base físico-química. La confianza en la actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución Francesa de 1789. El químico francés Antoine Laurent de Lavoisier publicó el Tratado elemental de química en 1789 e inició así la revolución de la química cuantitativa.
Los avances científicos del siglo XVIII prepararon el camino para el siguiente, llamado a veces “siglo de la correlación” por las amplias generalizaciones que tuvieron lugar en la ciencia. Entre ellas figuran la teoría atómica de la materia postulada por el químico y físico británico John Dalton, las teorías electromagnéticas de Michael Faraday y James Clerk Maxwell, también británicos, o la ley de la conservación de la energía, enunciada por el físico británico James Prescott Joule y otros científicos.
La teoría biológica de alcance más global fue la de la evolución, propuesta por Charles Darwin en su libro El origen de las especies, publicado en 1859, que provocó una polémica en la sociedad — no sólo en los ámbitos científicos — tan grande como la obra de Copérnico. Sin embargo, al empezar el siglo XX el concepto de evolución ya se aceptaba de forma generalizada, aunque su mecanismo genético continuó siendo discutido.
Mientras la biología adquiría una base más firme, la física se vio sacudida por las inesperadas consecuencias de la teoría cuántica y la de la relatividad. En 1927 el físico alemán Werner Heisenberg formuló el llamado principio de incertidumbre, que afirma que existen límites a la precisión con que pueden determinarse a escala subatómica las coordenadas de un suceso dado. En otras palabras, el principio afirmaba la imposibilidad de predecir con precisión que una partícula, por ejemplo un electrón, estará en un lugar determinado en un momento determinado y con una velocidad determinada. La mecánica cuántica no opera con datos exactos, sino con deducciones estadísticas relativas a un gran número de sucesos individuales.
La Ciencia En España Y Latinoamérica
Los comienzos de la ciencia española se remontan (dejando aparte el primitivo saber de san Isidoro de Sevilla) a la civilización hispanoárabe y sobre todo a la gran escuela astronómica de Toledo del siglo XI encabezada por al-Zarqalluh (conocido por Azarquiel en la España medieval). Después de la conquista de la ciudad de Toledo por el rey Alfonso VI en 1085, comenzó un movimiento de traducción científica del árabe al latín, promovido por el arzobispo Raimundo de Toledo. Este movimiento continuó bajo el patrocinio de Alfonso X el Sabio y los astrónomos de su corte (entre los que destacó el judío Isaac ibn Cid); su trabajo quedó reflejado en los Libros del saber de astronomía y las Tablas alfonsíes, tablas astronómicas que sustituyeron en los centros científicos de Europa a las renombradas Tablas toledanas de Azarquiel.
En la primera mitad del siglo XVI, España participó en el movimiento de renovación científica europea, en el que intervinieron de forma destacada Juan Valverde de Amusco, seguidor de Andrés Vesalio, y la escuela de los calculatores — promotores de la renovación matemática y física —, a la que pertenecían Pedro Ciruelo, Juan de Celaya y Domingo de Soto. El descubrimiento de América estimuló avances, tanto en historia natural (con José de Acosta y Gonzalo Fernández de Oviedo) como en náutica (con Pedro de Medina, Martín Cortés y Alonso de Santa Cruz).
Después de que Felipe II prohibiera estudiar en el extranjero, la ciencia española entró en una fase de decadencia y neoescolasticismo de la cual no saldría hasta finales del siglo XVII, con el trabajo de los llamados novatores. Este grupo promovía semiclandestinamente las nuevas ideas de Newton y William Harvey, y a él pertenecían, entre otros, Juan Caramuel y Lobkowitz, Juan de Cabriada y Antonio Hugo de Omerique, cuya obra Analysis Geometrica (1698) atrajo el interés de Newton. En la misma época, desde Nueva España, Diego Rodríguez comentó los hallazgos de Galileo.
El sistema newtoniano, todavía prohibido por la Iglesia, se difundió ampliamente en el mundo hispano del siglo XVIII, a partir de Jorge Juan y Antonio de Ulloa (socios del francés Charles de La Condamine en su expedición geodésica a los Andes) en la península Ibérica, José Celestino Mutis en Nueva Granada y Cosme Bueno en Perú.
El otro pilar de la modernización científica de la Ilustración fue Linneo, cuya nomenclatura binomial fascinó a toda una generación de botánicos europeos, estimulando nuevas exploraciones. En España, Miguel Barnades y más tarde sus discípulos Casimiro Gómez Ortega y Antonio Palau Verdera enseñaron la nueva sistemática botánica. El siglo XVIII fue la época de las expediciones botánicas y científicas al Nuevo Mundo, entre las que destacaron la de Mutis (corresponsal de Linneo) a Nueva Granada, la de Hipólito Ruiz y José Pavón a Perú, la de José Mariano Mociño y Martín de Sessé a Nueva España, y la de Alejandro Malaspina alrededor del globo. También en los territorios americanos la ciencia floreció en instituciones como el Real Seminario de Minería de México, el Observatorio Astronómico de Bogotá o el Anfiteatro Anatómico de Lima.
Las Guerras Napoleónicas y de Independencia interrumpieron el avance de la ciencia tanto en la península Ibérica como en Latinoamérica. En España la recuperación fue muy lenta; la vida científica se paralizó prácticamente hasta la aparición de nuevas ideas —el darwinismo en primer lugar— como secuela de la revolución de 1868 y la I República. En esta renovación científica desempeñó un papel fundamental el neurólogo Santiago Ramón y Cajal, primer premio Nobel español (en 1906 compartió el Premio Nobel de Fisiología y Medicina con el médico italiano Camillo Golgi por sus descubrimientos sobre la estructura del sistema nervioso); también intervinieron José Rodríguez de Carracido en química, Augusto González de Linares en biología, José Macpherson en geología y Zoel García Galdeano en matemáticas. En América Latina pueden referirse como representativas de la renovación científica del siglo XIX una serie de instituciones positivistas: en México, la Sociedad de Historia Natural (1868), la Comisión Geográfico-Exploradora (1877) o la Comisión Geológica (1886); en Argentina, el Observatorio Astronómico (1882), el Museo de Ciencias Naturales (1884), la Sociedad Científica Argentina (1872), el Observatorio de Córdoba (1870), dirigido por el estadounidense Benjamin Gould, y la Academia de las Ciencias de Córdoba (1874); por último en Brasil, la Escuela de Minas de Ouro Preto, el Servicio Geológico de São Paulo y el Observatorio Nacional de Río de Janeiro.
Gracias al empuje que el Premio Nobel de Ramón y Cajal dio a la ciencia en general, en 1907 el gobierno español estableció la Junta para la Ampliación de Estudios para fomentar el desarrollo de la ciencia, creando becas para el extranjero y, algo más tarde, una serie de laboratorios. Cuando Pío del Río Hortega se instaló en el laboratorio de histología establecido por la Junta en la Residencia de Estudiantes de Madrid, se convirtió en el primer investigador profesional en la historia de la ciencia española. El centro de innovación en ciencias físicas fue el Instituto Nacional de Física y Química de Blas Cabrera, que a finales de la década de 1920 recibió una beca de la Fundación Rockefeller para construir un nuevo y moderno edificio. Allí trabajaron Miguel Ángel Catalán, que realizó importantes investigaciones en espectrografía, y el químico Enrique Moles. En matemáticas el centro innovador fue el Laboratorio Matemático de Julio Rey Pastor, cuyos discípulos ocuparon prácticamente la totalidad de cátedras de matemáticas de España. Muchos de ellos fueron becados en Italia con Tullio Levi-Civita, Vito Volterra, Federigo Enriques y otros miembros de la gran escuela italiana, cuyo manejo del cálculo tensorial les había asociado con la relatividad general de Einstein. Rey Pastor fue un impulsor de la visita que Einstein realizó a España en 1923, en la que el físico alemán fue recibido sobre todo por matemáticos, ya que la física estaba mucho menos desarrollada. En biomedicina, además de la neurohistología, adquirió relevancia la fisiología, dividida en dos grupos: el de Madrid, regido por Juan Negrín, quien formó al futuro premio Nobel Severo Ochoa, y el de Barcelona, dirigido por August Pi i Sunyer. Durante la década de 1920 ambos grupos trabajaron en la acción química de las hormonas, sobre todo de la adrenalina.
En América Latina la fisiología, al igual que en España, ocupaba el liderazgo en las ciencias biomédicas. Los argentinos Bernardo Houssay y Luis Leloir ganaron el Premio Nobel en 1947 y 1970 respectivamente; fueron los primeros otorgados a científicos latinoamericanos por trabajos bioquímicos. En física, distintos países consideraron que la física nuclear era el camino más práctico hacia la modernización científica, debido a la facilidad para obtener aceleradores de partículas de países europeos o de Norteamérica. No obstante, la física nuclear comenzó, por su mínimo coste, con el estudio de los rayos cósmicos. En la década de 1930, los brasileños Marcello Damy de Souza y Paulus Aulus Pompéia descubrieron el componente penetrante o ‘duro’ de los rayos cósmicos; en 1947 César Lattes, investigando en el Laboratorio de Física Cósmica de Chacaltaya (Bolivia), confirmó la existencia de los piones. También la genética resultó ser un campo de investigación fructífero en América Latina. En 1941 el genetista estadounidense de origen ucraniano Theodosius Dobzhansky emprendió el primero de sus viajes a Brasil donde formó a toda una generación de genetistas brasileños en la genética de poblaciones. Su objetivo era estudiar las poblaciones naturales de Drosophila (moscas utilizadas para la investigación genética) en climas tropicales para compararlas con las poblaciones de regiones templadas que ya había investigado. Descubrió que las poblaciones tropicales estaban dotadas de mayor diversidad genética que las templadas y, por lo tanto, pudieron ocupar más "nichos" ecológicos que éstas.
Tanto en España como en América Latina la ciencia del siglo XX ha tenido dificultades con los regímenes autoritarios. En la década de 1960 se produjo en Latinoamérica la llamada ‘fuga de cerebros’: en Argentina, por ejemplo, la Facultad de Ciencias Exactas de la Universidad de Buenos Aires perdió más del 70% del profesorado debido a las imposiciones del gobierno contra las universidades. Bajo la dictadura militar de la década de 1980, los generales expulsaron de este país a los psicoanalistas, y el gobierno apoyó una campaña contra la ‘matemática nueva’ en nombre de una idea mal entendida de la matemática clásica. En Brasil, bajo la dictadura militar de la misma época, un ministro fomentó la dimisión de toda una generación de parasitólogos del Instituto Oswaldo Cruz, dando lugar a lo que se llamó ‘la masacre de Manguinhos’.
Comunicación Científica
A lo largo de la historia, el conocimiento científico se ha transmitido fundamentalmente a través de documentos escritos, algunos de los cuales tienen una antigüedad de más de 4.000 años. Sin embargo, de la antigua Grecia no se conserva ninguna obra científica sustancial del periodo anterior a los Elementos del geómetra Euclides. De los tratados posteriores escritos por científicos griegos destacados sólo se conservan aproximadamente la mitad. Algunos están en griego, mientras que en otros casos se trata de traducciones realizadas por eruditos árabes en la edad media. Las escuelas y universidades medievales fueron los principales responsables de la conservación de estas obras y del fomento de la actividad científica.
Sin embargo, desde el renacimiento esta labor ha sido compartida por las sociedades científicas; la más antigua de ellas, que todavía existe, es la Accademia nazionale dei Lincei (a la que perteneció Galileo), fundada en 1603 para promover el estudio de las ciencias matemáticas, físicas y naturales. Ese mismo siglo, el apoyo de los gobiernos a la ciencia llevó a la fundación de la Royal Society de Londres (1660) y de la Academia de Ciencias de París (1666). Estas dos organizaciones iniciaron la publicación de revistas científicas, la primera con el título de Philosophical Transactions y la segunda con el de Mémoires.
Durante el siglo XVIII otras naciones crearon academias de ciencias. En Estados Unidos, un club organizado en 1727 por Benjamin Franklin se convirtió en 1769 en la Sociedad Filosófica Americana. En 1780 se constituyó la Academia de las Artes y las Ciencias de América, fundada por John Adams, el segundo presidente estadounidense. En 1831 se reunió por primera vez la Asociación Británica para el Desarrollo de la Ciencia, seguida en 1848 por la Asociación Americana para el Desarrollo de la Ciencia y en 1872 por la Asociación Francesa para el Desarrollo de la Ciencia. Estos organismos nacionales editan respectivamente las publicaciones Nature, Science y Compte-Rendus. El número de publicaciones científicas creció tan rápidamente en los primeros años del siglo XX que el catálogo Lista mundial de publicaciones científicas periódicas editadas en los años 1900 - 1933 ya incluía unas 36.000 entradas en 18 idiomas. Muchas de estas publicaciones son editadas por sociedades especializadas dedicadas a ciencias concretas.
Desde finales del siglo XIX la comunicación entre los científicos se ha visto facilitada por el establecimiento de organizaciones internacionales, como la Oficina Internacional de Pesas y Medidas (1875) o el Consejo Internacional de Investigación (1919). Este último es una federación científica subdividida en uniones internacionales para cada una de las ciencias. Cada pocos años, las uniones celebran congresos internacionales, cuyos anales suelen publicarse. Además de las organizaciones científicas nacionales e internacionales, muchas grandes empresas industriales tienen departamentos de investigación, de los que algunos publican de forma regular descripciones del trabajo realizado o envían informes a las oficinas estatales de patentes, que a su vez editan resúmenes en boletines de publicación periódica.

2 comentarios:

Anónimo dijo...

Esto hay que llevar el lunes para la prueba profe?
3º medio

Francisco Suazo dijo...

si. solo esto